Proofs Without Syntax Part I: Some Examples

Serena Delli, Pedro Rocha, Mirko Engler

We exhibit combinatorial proofs of some propositions. Recall that for every proposition ϕ we can build recursively its associated graph, denoted by $G(\phi)$. The kernel of the map G(-) includes the relation \cong , which denotes congruence modulo associativity and commutativity of \wedge and \vee , double negation $(\neg \neg \phi \cong \phi)$, de Morgan duality and which is closed under $\phi \to \psi \cong \neg \phi \lor \psi$. We simplify every proposition until we arrive to a form which is equivalent under \cong and easier to depict.

To give a combinatorial proof of ϕ is tantamount to give a map

$$h: C \to G(\phi)$$

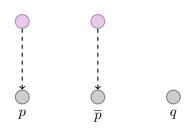
where

- C is nicely coloured, which means
 - every colour class of C has at most two vertices
 - no union of two-vertex colour classes induces a matching
- C is a cograph
- every colour class of C is axiomatic
- *h* is a skew fibration (in particular, *h* is a graph homomorphism)

We will not check that those conditions hold but the reader may easily verify that it does.

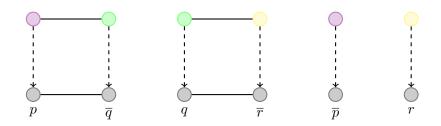
a) $\neg p \rightarrow (p \rightarrow q)$. Observe that

$$\neg p \to (p \to q) \cong \neg \neg p \lor (p \to q)$$
$$\cong p \lor \neg p \lor q$$



b) $(p \to q) \to [(q \to r) \to (p \to r)]$. Observe that

$$(p \to q) \to [(q \to r) \to (p \to r)] \cong \neg (p \to q) \lor [(q \to r) \to (p \to r)]$$
$$\cong (p \land \neg q) \lor \neg (q \to r) \lor (p \to r)$$
$$\cong (p \land \neg q) \lor (q \land \neg r) \lor \neg p \lor r$$

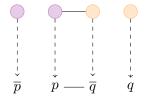


c)
$$p \to (q \to p).$$
 Observe that

$$p \to (q \to p) \cong \neg p \lor (q \to p)$$
$$\cong \neg p \lor \neg q \lor p$$

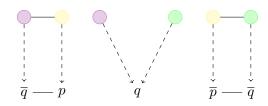
d) $p \to [(p \to q) \to q]$. Observe that

$$\neg p \lor [(p \to q) \to q] \cong \neg p \lor \neg (p \to q) \lor q$$
$$\cong \neg p \lor (p \land \neg q) \lor q$$



e) $[(p \to q) \land (\neg p \to q)] \to q$. Observe that

$$\begin{split} [(p \to q) \land (\neg p \to q)] \to q &\cong \neg [(p \to q) \land (\neg p \to q)] \lor q \\ &\cong \neg (p \to q) \lor \neg (\neg p \to q)] \lor q \\ &\cong (p \land \neg q) \lor (\neg p \land \neg q) \lor q \end{split}$$



f) $[p \to (q \to r)] \to [(p \to q) \to (p \to r)].$ Observe that

$$\begin{split} [p \to (q \to r)] \to [(p \to q) \to (p \to r)] &\cong \neg [p \to (q \to r)] \lor [(p \to q) \to (p \to r)] \\ &\cong [p \land \neg (q \to r)] \lor \neg (p \to q) \lor (p \to r) \\ &\cong (p \land q \land \neg r) \lor (p \land \neg q) \lor \neg p \lor r \end{split}$$

